Non-Local Manifold Parzen Windows

نویسندگان

  • Yoshua Bengio
  • Hugo Larochelle
  • Pascal Vincent
چکیده

To escape from the curse of dimensionality, we claim that one can learn non-local functions, in the sense that the value and shape of the learned function at x must be inferred using examples that may be far from x. With this objective, we present a non-local non-parametric density estimator. It builds upon previously proposed Gaussian mixture models with regularized covariance matrices to take into account the local shape of the manifold. It also builds upon recent work on non-local estimators of the tangent plane of a manifold, which are able to generalize in places with little training data, unlike traditional, local, non-parametric models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold Parzen Windows

The similarity between objects is a fundamental element of many learning algorithms. Most non-parametric methods take this similarity to be fixed, but much recent work has shown the advantages of learning it, in particular to exploit the local invariances in the data or to capture the possibly non-linear manifold on which most of the data lies. We propose a new non-parametric kernel density est...

متن کامل

Local Component Analysis

Kernel density estimation, a.k.a. Parzen windows, is a popular density estimation method, which can be used for outlier detection or clustering. With multivariate data, its performance is heavily reliant on the metric used within the kernel. Most earlier work has focused on learning only the bandwidth of the kernel (i.e., a scalar multiplicative factor). In this paper, we propose to learn a ful...

متن کامل

High order Parzen windows and randomized sampling

In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are from Parzen window method for density estimation and sampling theory. First, we define basic window functions to construct our high order Parzen windows. We derived learning rates for the least-square regression and densit...

متن کامل

Finite Sample Error Bound for Parzen Windows

Parzen Windows as a nonparametric method has been applied to a variety of density estimation as well as classification problems. Similar to nearest neighbor methods, Parzen Windows does not involve learning. While it converges to true but unknown probability densities in the asymptotic limit, there is a lack of theoretical analysis on its performance with finite samples. In this paper we establ...

متن کامل

Manifold Constrained Variational Mixtures

In many data mining applications, the data manifold is of lower dimension than the dimension of the input space. In this paper, it is proposed to take advantage of this additional information in the frame of variational mixtures. The responsibilities computed in the VBE step are constrained according to a discrepancy measure between the Euclidean and the geodesic distance. The methodology is ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005